

TO Fabulous

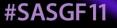
2011

#### SAS High Performance Computing: The Future is Not What it Used to Be

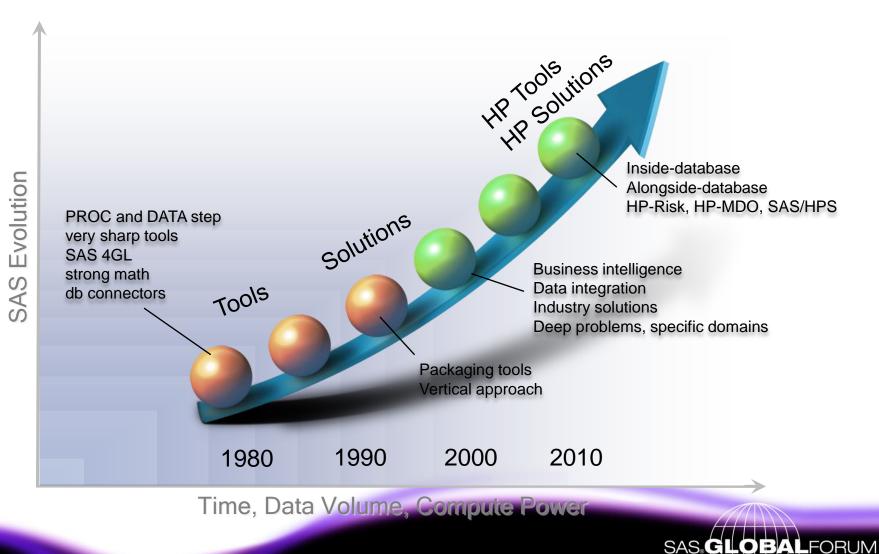
Paul Kent paul.kent@sas.com twitter.com/hornpolish

10

1


VP, SAS Platform R&D

Oliver Schabenberger High Performance Analytics oliver.schabenberger@sas.com


#### **Premises**

- Computing landscape has changed profoundly
  - Plentiful multi-core blade servers
  - Distributed computing platforms affordable
- Data landscape has changed profoundly
  - Data is much more plentiful
  - More MPP databases and file systems
- SAS High-Performance Computing
  - Ives at the intersection of Big Data and Big Analytics
  - is a major area for tools and solution development
  - considers tasks of any analytic complexity





#### From Tools to Solutions to Tools and **Solutions**



SAS.G

#### Contents

#SASGF11

#### **Hardware Story**

Multi-socket, multi-core Commodity blades Data Story Data explosion MPP databases

#### SAS High-Performance Computing

Analytic Tiers

Matching data and compute style



#### **Trends in Hardware**

- Multi-socket, multi-core
  - Modern platforms have one, two, or more sockets
  - Each socket houses a multi-core processor
  - e.g., dual quad core = 8 total cores in 2 sockets of 4 cores
  - 1 x 2, 1 x 4, 2 x 4: common for office PCs
  - 2 x 6, 2 x 8, 2 x 12: common for HPC blades
- Blade servers
  - A blade is a stripped-down computer
  - Blades are arranged in enclosures (chassis) that provide power, cooling, networking, interconnects
  - Chassis are arranged in racks



## **Trends in Hardware**



- Systems can be made CPU-heavy or disk-heavy
- 48 or 96 GB of RAM per blade not uncommon (golden rule: 4 GB RAM per core for HPC apps)
- 64-bit x86 Linux becoming standard



# **Big Analytics—Big Multiplier**

- 2011 middle-of-the-road system
  - hp Proliant BL465c blades
  - 2 x 12 core 2.2 GHz processor (AMD Opteron 6174)
  - 64 GB of RAM
  - 2 x 300 GB drives
  - standard 10 GbE switches
- Rack of 48 blades (3 chassis of 16 blades each)
  - 1,152 cores
  - 3 TB of memory
  - 28 TB of storage
  - List price ~ \$600 K





## **Possibility for HPC?**

- Blade systems offer tremendous compute and storage power at low cost
- Software needs to take advantage of
  - Multi-core processors on each blade
  - Distributed shared nothing environment across blades
  - Local storage to read/write data and to reduce data movement
- Obvious choice for high-performance solutions with relatively small input data
- How do we cope with TB or 100's of GB of input/output?



#### Contents

Hardware Story

Multi-socket, multi-core Commodity blades

**Data Story** 

Data explosion MPP databases

SAS High-Performance Computing

Analytic Tiers

Matching data and compute style



#### **Data Environments**

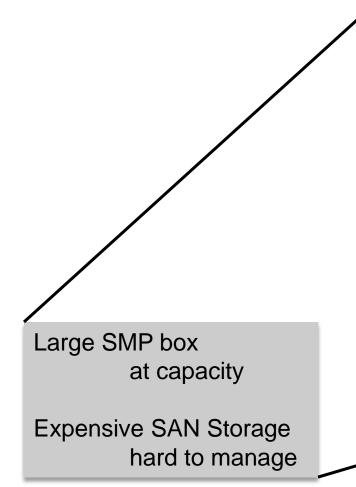
- Buzzword Bingo. Mine is Bigger than Yours
- 90's Mainframe Hosted Analytics
  - Decision Support. Information Center. ...
- 00's Unix. Large SMP. Big Shared Storage.
- 05's Unix. Grid. Rack. Big Shared Storage.
- 05's Unix. Rack. Shared Nothing Storage
- 2010 Cluster. Still Shared Nothing





Data Deliver Usage

161 EB captured and replicated in 2006
281 EB captured and replicated in 2007
264 EB of available storage in 2007
1800 EB captured and replicated in 2011








#### **Data at Discover Financial Services**

After



#### Before

Central Database / EDW

Per Analyst Sandboxes

#### Grid for Compute

- Multiple Analysts
- Restart / Sequencing
- Performance Groups

Source: Teradata Partners Conference, 2010



## Data at eBay

- Enterprise Data Warehouse
  - 500 5000 users
  - High concurrency (1000s active queries per minute slice)
- Singularity
  - 50 500 users
  - Modest concurrency (100s active queries per minute slice)
  - ~2x more data than EDW
- Hadoop Cluster
  - 5 10 users
  - Low concurrency
  - CPU "rich"

#SASGF11

?x more data than Singularity

Source: O Ratzesberger. Teradata Partners Conference, 2010



# Hard Projection – to – Soft Projection

| Platform       | Projection | Description                                                                                                                                           |
|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDW            | Hard       | <ul> <li>Traditional Data Models</li> <li>"Managed Data Warehouse"</li> <li>Optimized Placement</li> <li>Optimized Indexes</li> </ul>                 |
| Singularity    | In Between | <ul> <li>Some Traditional Columns</li> <li>A "blob" organized as name-value pairs</li> </ul>                                                          |
| Hadoop Cluster | Soft       | <ul> <li>Data stored as text/binary files "as you received them"</li> <li>Interesting Fields projected from files during initial map phase</li> </ul> |

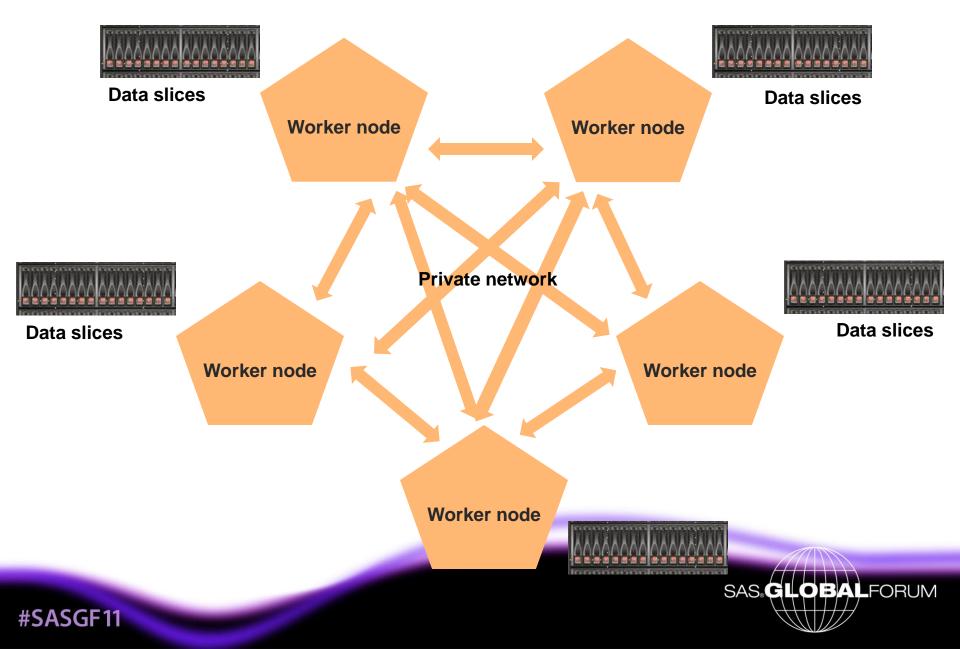
**#SASGF11** 

Source: O Ratzesberger. *Teradata Partners Conference,* 2010

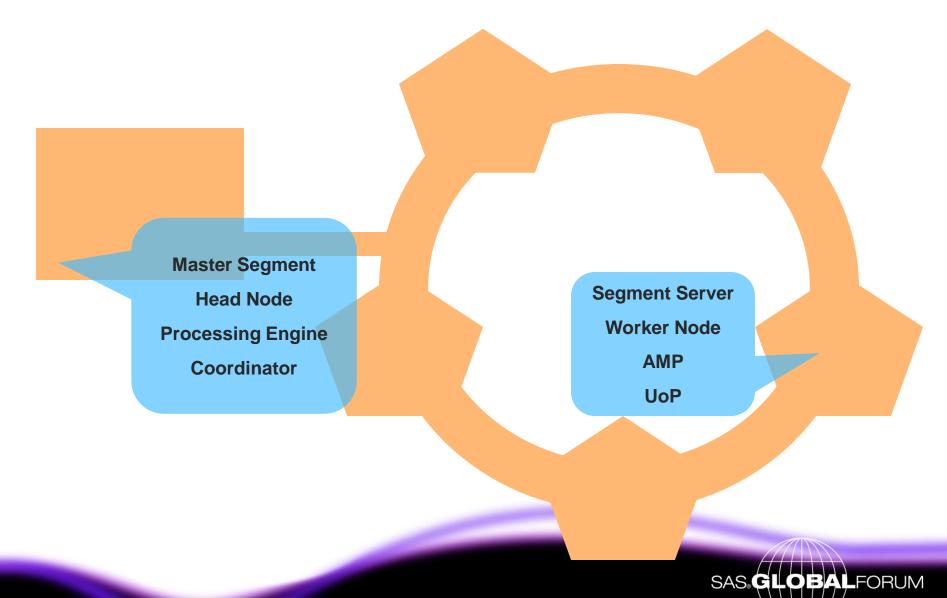


#### How Do You Respond to the Data Explosion

- Get more storage
- Store in multiple places
  - Distributed databases
  - MPP architecture allows parallel processing
- Classic shared nothing MPP for DBMS
  - A set of CPU bricks (blades!!!)
  - A matching set of disks
  - A private network




#### **The Usual Suspects**






#### **Database MPP – Simplified View**



#### **Database MPP – Simplified View**



#### **Database MPP – Simplified View**

Partitioned Data "Divide and Conquer"

Redundancy :: Resiliency



# Comparison: Blade Server HPC and MPP DBMS

- Homogeneous hardware
  - At least at the worker node level
  - Nodes are multi-socket, multi-core platforms
  - 64-bit x86 Linux operating systems
- Central point of contact
  - Head node, master segment, queen, etc. for DBMS
  - Dedicated or arbitrarily chosen root node for HPC
- Focus slightly different
  - MPP DBMS: more disk, less CPU
  - HPC blades: less disk, more CPU



#### Look Ahead

- How can we engage a MPP DBMS environment for SAS high-performance analytics?
- Which analytic problems can be solved and how?
- How do we resolve tension between demand for CPU and disk



#### Contents

Hardware Story

Multi-socket, multi-core Commodity blades Data Story Data explosion

**MPP** databases

#### **SAS High-Performance Computing**

Analytic Tiers

Matching data and compute style





#### **Analytics—Latest Victim of Buzzword Craze**

 Hal Varian, Google's Chief Economist: "I keep saying that the sexy job in the next 10 years will be statisticians. And I'm not kidding."

- 4 out of 3 people using the word "Analytics" are bad with fractions.
- Deep Analytics! (as compared to what, shallow analytics?)
  - "In practical terms, it [Deep Analytics] is the process of creating an analysis application for a power user specifically for them to do Deep Analytics."



## **Analytical Tiers**

| Tier      | Examples                              | Class | SAS Procedures                      |
|-----------|---------------------------------------|-------|-------------------------------------|
| Hindsight | Descriptive statistics, summarization |       | SUMMARY, MEANS, RANK,<br>UNIVARIATE |
|           | Cross-tabulation                      |       | FREQ                                |
|           | Reporting                             |       | REPORT, TABULATE                    |





## **Analytical Tiers**

| Tier                             | Examples                                                                                       | Class                               | SAS Procedures                              |
|----------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|
| Hindsight                        | Descriptive statistics, summarization                                                          |                                     | SUMMARY, MEANS, RANK,<br>UNIVARIATE         |
|                                  | Cross-tabulation                                                                               |                                     | FREQ                                        |
|                                  | Reporting                                                                                      |                                     | REPORT, TABULATE                            |
| Insight—<br>descriptive modeling | Correlation analysis<br>Variable clustering<br>Factor analysis<br>Principal component analysis | Relationships<br>among<br>variables | REG, CORR,<br>VARCLUS<br>FACTOR<br>PRINCOMP |



# **Analytical Tiers**

| Tier                              | Examples                                                                                       | Class                               | SAS Procedures                              |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|--|--|--|--|
| Hindsight                         | Descriptive statistics, summarization                                                          |                                     | SUMMARY, MEANS, RANK,<br>UNIVARIATE         |  |  |  |  |
|                                   | Cross-tabulation                                                                               |                                     | FREQ                                        |  |  |  |  |
|                                   | Reporting                                                                                      |                                     | REPORT, TABULATE                            |  |  |  |  |
| Insight—<br>descriptive modeling  | Correlation analysis<br>Variable clustering<br>Factor analysis<br>Principal component analysis | Relationships<br>among<br>variables | REG, CORR,<br>VARCLUS<br>FACTOR<br>PRINCOMP |  |  |  |  |
| Foresight—<br>predictive modeling | Linear models<br>Generalized linear models                                                     | Linear<br>elements                  | REG, GLM, GLMSELECT<br>LOGISTIC, GENMOD     |  |  |  |  |
|                                   | Nonlinear least-squares and maximum likelihood                                                 | Nonlinear<br>elements               | NLIN, NLP, MODEL                            |  |  |  |  |
|                                   | Neural networks                                                                                |                                     | NEURAL                                      |  |  |  |  |
|                                   | Linear mixed models<br>Generalized linear mxed models<br>Nonlinear mixed models                | Random<br>effects                   | MIXED<br>GLIMMIX<br>NLMIXED                 |  |  |  |  |
|                                   | Decision methods                                                                               |                                     | ARBOR, ARBORETUM                            |  |  |  |  |
| Optimization                      | Optimization                                                                                   |                                     |                                             |  |  |  |  |



# **High-End Analytics**

- Much more than slice + dice reporting
- Often requires
  - access to all the data to train quality models
  - multiple passes through the data, even for non-iterative techniques
- Analytical techniques are varied
  - Customers resort to less appropriate methods to get "some results"/"any results" with big data
  - Real cases:
    - » 300 GB of input data for predictive modeling
    - » 1 billion records in a logistic regression
    - » 57 GB of scores from a single proc run



#### Contents

Hardware Story

Multi-socket, multi-core Commodity blades Data Story Data explosion

MPP databases

#### **SAS High-Performance Computing**

**Analytic Tiers** 

Matching data and compute style





#### **The Most Important Acceleration Strategies**

- Co-location (of data and analytics)
- Co-location (of data and analytics)
- Co-location (of data and analytics)
- Avoid the disk, use memory
- Parallelize
- But, co-location
  - has many technological solutions
  - has to be done right
  - has to adjust to the complexity of the analytic task



# Acceleration Strategies With Distributed DBMS

- Customers want to improve response times to SAS workload that accesses data inside DBMS
- What are the options
  - Re-state the work as SQL, let DBMS parallelize
  - Extend SQL with UDFs
  - Go beyond the simple (obvious) transforms
  - Put SAS CPUs closer to DBMS CPUs

SQL-PassThru Inside-DB Inside-DB Alongside-DB

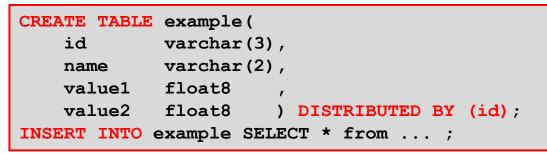


# **Analytical Tiers and Acceleration**

Ħ

| Tier                              | Examples                                                                                       | Acceleration                                 | SAS Procedures                              |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|--|--|
| Hindsight                         | Descriptive statistics, summarization                                                          | SQL-Passthru<br>Inside-DB                    | SUMMARY, MEANS, RANK,<br>UNIVARIATE         |  |  |  |  |
|                                   | Cross-tabulation                                                                               | SQL-Passthru<br>Inside-DB                    | FREQ                                        |  |  |  |  |
|                                   | Reporting                                                                                      | SQL-Passthru<br>Inside-DB                    | REPORT, TABULATE                            |  |  |  |  |
| Insight—<br>descriptive modeling  | Correlation analysis<br>Variable clustering<br>Factor analysis<br>Principal component analysis | Inside-DB<br>possible, but not<br>convenient | REG, CORR,<br>VARCLUS<br>FACTOR<br>PRINCOMP |  |  |  |  |
| Foresight—<br>predictive modeling | Linear models<br>Generalized linear models                                                     | ?                                            | REG, GLM, GLMSELECT<br>LOGISTIC, GENMOD     |  |  |  |  |
|                                   | Nonlinear least-squares and maximum likelihood                                                 | ?                                            | NLIN, NLP, MODEL                            |  |  |  |  |
|                                   | Neural networks                                                                                | ?                                            | NEURAL                                      |  |  |  |  |
|                                   | Linear mixed models<br>Generalized linear mxed models<br>Nonlinear mixed models                | ?                                            | MIXED<br>GLIMMIX<br>NLMIXED                 |  |  |  |  |
|                                   | Decision methods                                                                               | ?                                            | ARBOR, ARBORETUM                            |  |  |  |  |
| Optimization                      | Optimization                                                                                   | ?                                            | OPTMODEL, MO, MILP                          |  |  |  |  |




### **Inside-DB Barriers in High-End Tier**

- Multi-pass methods
  - Only first pass should hit disk, keep data memory resident afterwards
  - Even ostensibly simple problems might require more than one pass (interaction effects with classification variables)
- Iterative methods
- Classification factors
- Dynamically generated code
- State preservation between passes

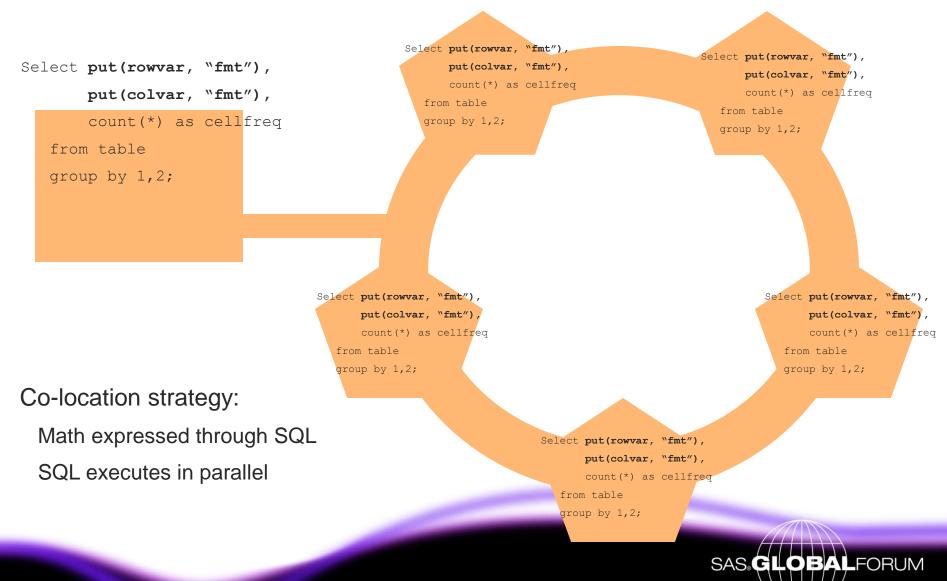


#### **Inside-DB and MapReduce**

- "What we've got here is a failure to communicate"
- DBMS communicates among nodes
  - If this requires node-to-node com



Why would we try to do this without?


```
proc hplogistic data=GPLib.MyTable;
  class A B C D ;
  model y = a b c b*d x1-x100;
  performance details;
  id a b;
  output out=gplib.logout pred=p xbeta=xb;
run;
```



# Architecture Details (why does it matter)

| <pre>proc hpreg data=Greenplum.MyTable;</pre>                                                                 |                                                                                                                | Class Level Information |            |                |               |           |            |           |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|------------|----------------|---------------|-----------|------------|-----------|
| <pre>class state age_group;<br/>model y = A B state*age_group x1-x100;<br/>selection stepwise;<br/>run;</pre> | Class<br>state                                                                                                 | _                       | evels<br>7 | A:<br>M:<br>No | issis<br>orth | a Al      | New<br>ina | York      |
| Table partitioned by zip code                                                                                 |                                                                                                                |                         |            | 0.             |               |           |            |           |
| Alaska, Alabama                                                                                               | Segment                                                                                                        | AL<br>(1)               | AK<br>(2)  | MS<br>(3)      | NY<br>(4)     | NC<br>(5) | OH<br>(6)  | TX<br>(7) |
| Mississippi, North Carolina                                                                                   | 1                                                                                                              | 2                       | 1          |                |               |           |            |           |
| North Carolina                                                                                                | 2                                                                                                              |                         |            | 1              |               | 2         |            |           |
| North Carolina, Alaska                                                                                        | 4                                                                                                              |                         | 2          |                |               | 1         |            |           |
| New York, North Carolina                                                                                      | 5                                                                                                              |                         |            |                | 1             | 2         |            |           |
| Greenplum                                                                                                     | 6                                                                                                              |                         |            |                |               |           | 1          | 2         |
| segments Ohio, Texas                                                                                          | 7                                                                                                              |                         |            |                | 2             |           |            | 1         |
| Texas, N                                                                                                      | New York Order-dependent local encoding<br>mapped to correct global encoding<br>requires communication b/w seg |                         |            |                |               | coding    | ;          |           |
|                                                                                                               |                                                                                                                |                         |            | SA             | S. YI         | MP        |            | ואוטחע    |

#### **Strategy #1: Send SQL to Worker Nodes**



#### **Strategy #2: Send Math to worker nodes**

 $\sum_{i} x_i x'_i$ 

 $\sum x_i x'_i$ 

With select \* from T as input

Select \*

from SAS SSCP PREP(input.\*);

Move up-front calculation that range over all data into database

 $\sum_{i} x_{i} x'_{i}$ 

Early success with **X'X** calculation in many classical regression procedures (REG, PRINCOMP, VARCLUS)

Co-location: bring math to data through UDF



 $x_i x'_i$ 

 $x_i x'_i$ 

### **Strategy #2: Disadvantages**

- Local Partition Data Scanned only once.
  - No "do until tolerance < xxx"</p>
- Local Results returned without any look at other Local Results
  - Similar to Hadoop Map stages have no access to other instances of Map running else where
- Table UDF has constraints on
  - Number of columns
  - Result-set signature (column definitions)
- Math Logic ran under DBMS "terms & conditions"





#### New Strategy: Alongside-the-Database

- Math processes running as peers of DBMS
- Uses same hardware as the DBMS
- Pops on/off dynamically (on demand)
- Co-location model: move pass data to analytic process
- Math processes can communicate (MPI, Message Passing Interface)



#### **Alongside-dB: Benefits**

- Database HPC Appliance provides
  - World-class MPP database
  - High-performance ETL/ELT/ETLT
  - Replication and failover
  - High-performance analytic environment
- SAS in-Memory Analytics provides
  - High-end high-performance analytics
  - Familiar user interface (MVA SAS)
  - Distributed read/write into/from local memory





## **Alongside-dB: Talking Points**

- Getting data to the analytic process is only half of the story. You also need
  - analytic software that can make use of partial data
  - SMP/MPP software that takes advantage of multi-core platforms
  - software that knows when and how much to communicate between units to enable high-end analytics
- The MPP database minimizes communications and uses known points in the query process
- High-end distributed analytics do the same



## SAS High-Performance Analytics SAS/HPA

- HPREG linear regression and variable selection
  - HPLOGISTIC logistic regression and variable selection
    - linear mixed models
    - HPNEURAL neural nets
- HPNLIN nonlinear regression and maximum likelihood
- HPREDUCE

HPLMIXED

- covariance/correlation analysis, variable reduction
- HPDMDB summarization
- HPSUMMARY
- HPFOREST
- HPDS2

- descriptive statistics
  - predictive modeling based on decision trees
  - next-generation data step

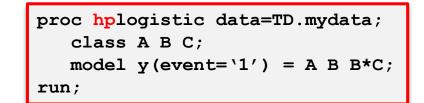


#### **SAS Procedures**

```
proc logistic data=TD.mydata;
    class A B C;
    model y(event=`1') = A B B*C;
run;
```

Single-threaded

Not aware of distributed computing environment


SAS/ACCESS for data read

Runs on client

Brings distributed data to client

Large I/O

#SASGF11



#### Multi-threaded

Aware of distributed computing environment

SAS/ACCESS for parsing support

Runs on client or DBMS appliance

Runs alongside distributed data source

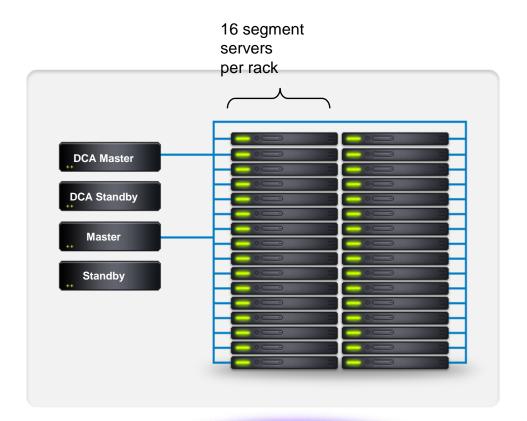
**In-Memory Analytics** 





## **Platform**



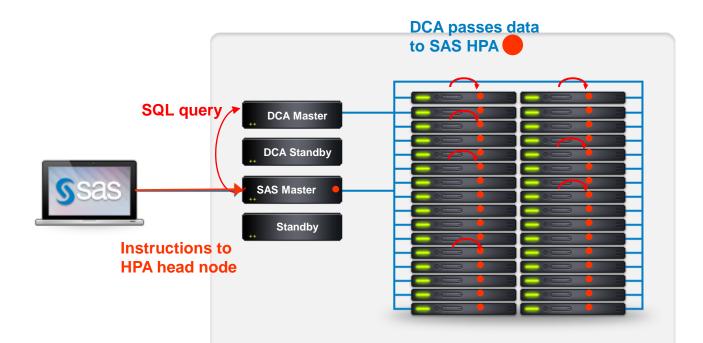

- EMC Greenplum and Teradata analytic appliances
- Provides
  - MPP database
  - MPP computing environment
- Client-side operation from standard SAS session





ERADA

#### **Two Rack EMC/Greenplum DCA**

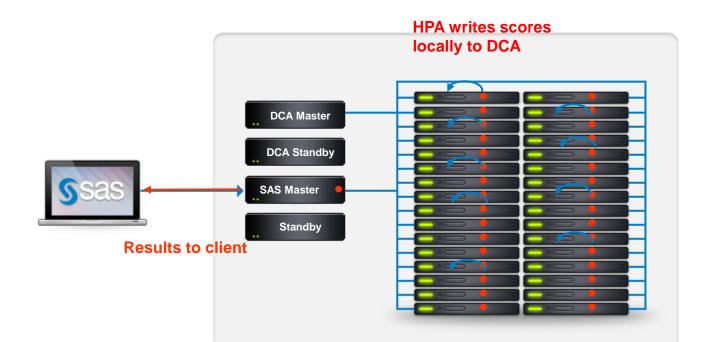





#### **SAS/HPA Alongside-Greenplum**

```
proc hplogistic data=GPLib.MyTable;
    class A B C D ;
    model y = a b c b*d x1-x100;
    output out=GPlib.logout pred=p;
run;
```

**#SASGF11** 

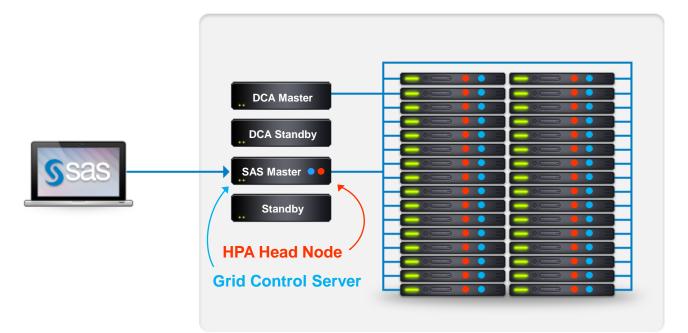



= SAS High Performance Analytics



#### **SAS/HPA Alongside-Greenplum**

```
proc hplogistic data=GPLib.MyTable;
    class A B C D ;
    model y = a b c b*d x1-x100;
    output out=GPlib.logout pred=p;
run;
```




#### = SAS High Performance Analytics





#### SAS Grid Manager and SAS/HPA Alongside-Greenplum



= SAS High Performance Analytics
 = SAS Grid Manager



#### Contents

#### Hardware Story

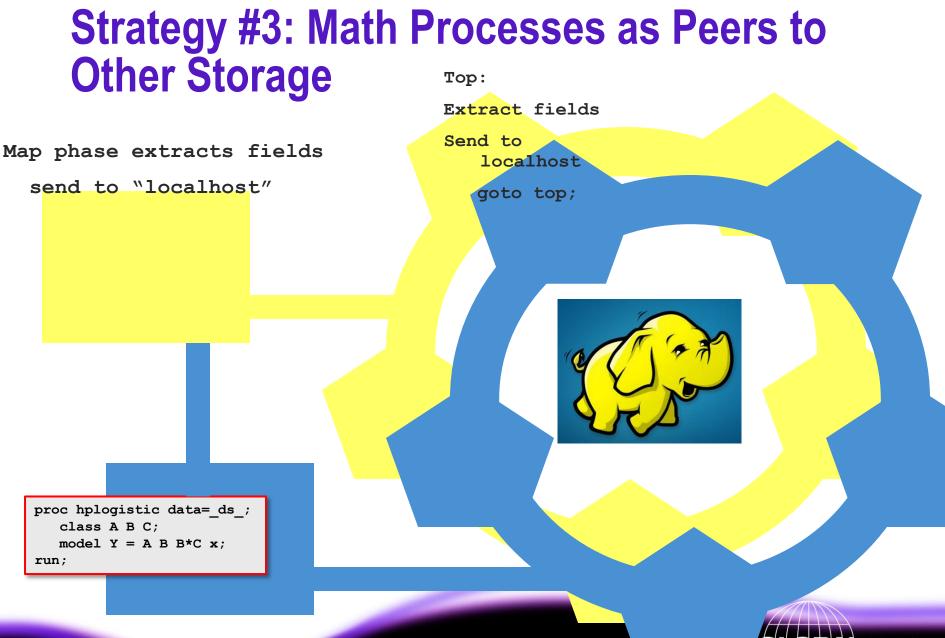
Multi-socket, multi-core Commodity blades Data Story

> Data explosion MPP databases

#### **SAS High-Performance Computing**

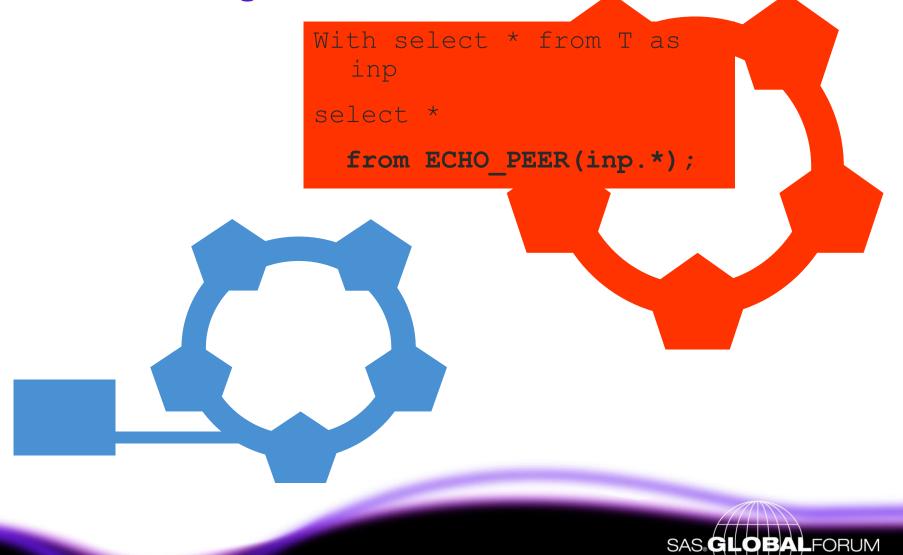
**Analytic Tiers** 

Matching data and compute style


Where do we go from here?



#### Where Do We Go From Here


- SAS High-Performance Analytics
  - major platform for proc-based high-performance computing
  - alongside-the-database model
  - more solutions built on top of SAS/HPA
- More SAS high-performance solutions
- Integration of in-database, alongside-db approaches
- DS2 as next-generation data step language
  - Executes inside and alongside the database
  - "DS2, the last language you will ever learn"
- Asymmetric architectures have potential







# Strategy #3 :: Math Processes as Peers to Other Storage





# 2011LasVegasNevada

Thank You

